Direct numerical simulation of bubble-particle interactions in flotation

Tong Qin¹, Fusheng Niu², Limei Bai², Jinxia Zhang²

¹Beijing Institute of Astronautical Systems Engineering, Beijing, China, 100076
²North China University of Science and Technology, Hebei, China, 063009

Abstract

The interaction between a deformable bubble and a rigid particle in viscous liquids in flotation is studied by using direct numerical simulations via an arbitrary-Lagrangian-Eulerian (ALE) method. In flotation, due to the small size, the bubble will stay as a sphere in the fluid without external forces and its deformation is caused by the moving particle. In this study we assume the flow field is axisymmetric and the motion of the gas inside the bubble is neglected. The particle equations and the Navier-Stokes equations for the fluid are solved in a unified finite element framework. The particle obtains an impact velocity by an external force and the impact velocity is varied over a wide range. A 'critical time scale' $T_0$ was identified for the interaction process. For successful contacts between particle and bubble, the time scale of their relative motion must be less than $T_0$. 